

Detect Rumors in Microblog Posts for Low-Resource Domains via Adversarial Contrastive Learning

Hongzhan Lin^{1,2}, Jing Ma^{2,*}, Liangliang Chen¹, Zhiwei Yang³, Mingfei Cheng¹, Guang Chen^{1,*} ¹Beijing University of Posts and Telecommunications, Beijing, China ²Hong Kong Baptist University, Hong Kong SAR, China ³Jilin University, Changchun, China {linhongzhan,outside,mingfeicheng,chenguang}@bupt.edu.cn majing@comp.hkbu.edu.hk, yangzw18@mails.jlu.edu.cn

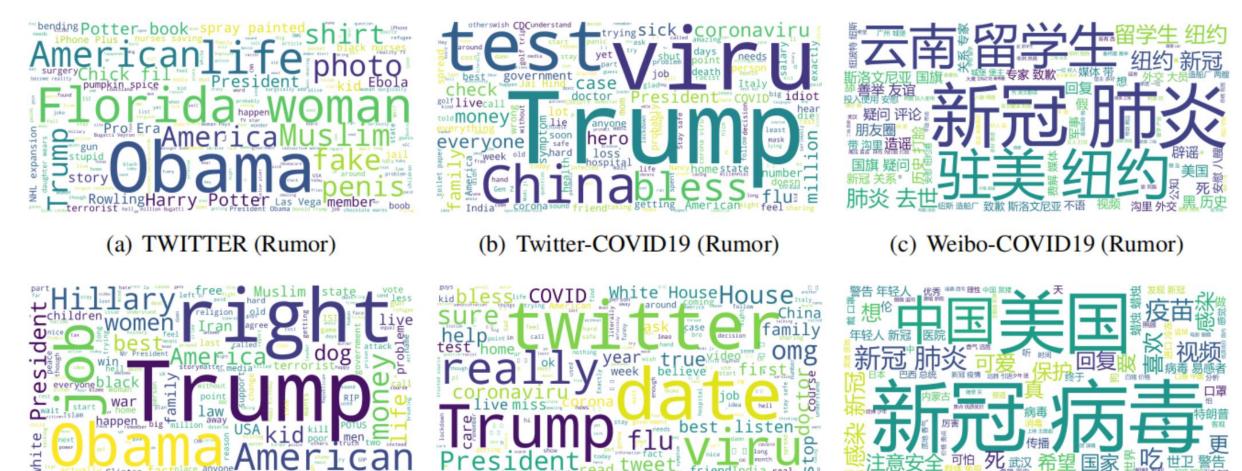
NAACL2022

code: https://github.com/DanielLin97/ACLR4RUMOR-NAACL2022

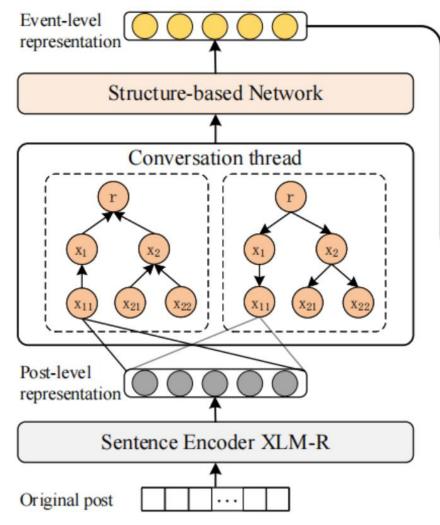
2022. 5. 22

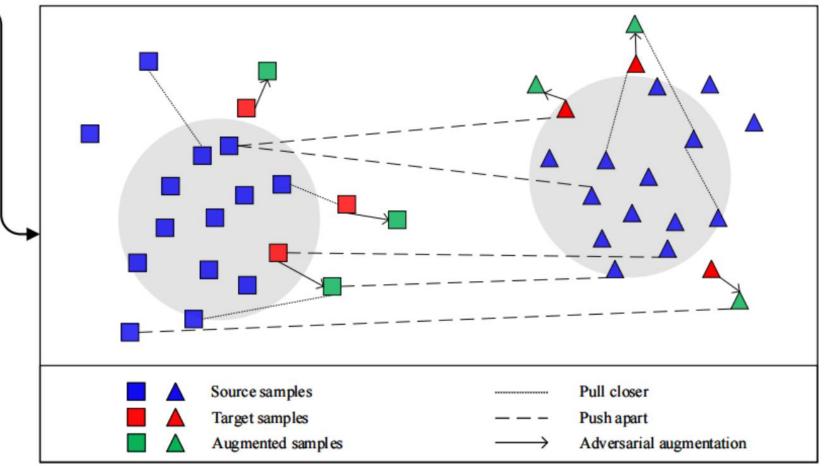
Reported by Xiaoke Li

Advanced Technique of Artificial Intelligence

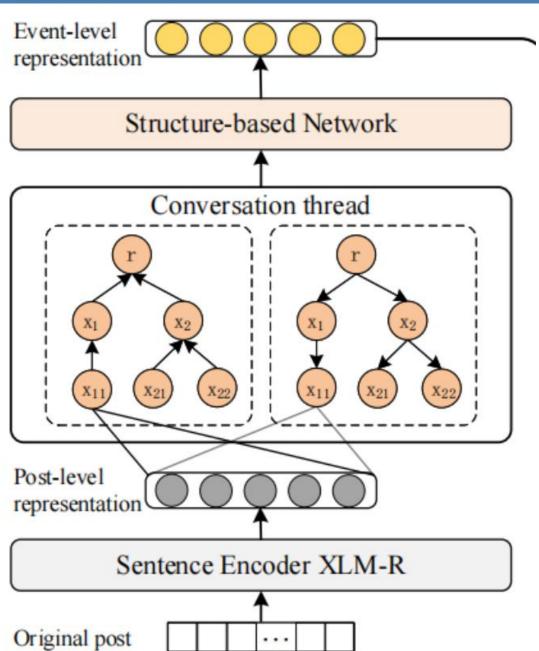


(d) TWITTER (Non-rumor) (e) Twitter-COVID19 (Non-rumor) (f) Weibo-COVID19 (Non-rumor) Figure 1: Word clouds of rumor and non-rumor data generated from TWITTER, Twitter-COVID19, and Weibo-COVID19 datasets, where the size of terms corresponds to the word frequency. Both TWITTER and Twitter-COVID19 are presented in English while Weibo-COVID19 in Chinese.





Adversarial Contrastive Training Paradigm



$$\mathcal{D}_{s} = \{C_{1}^{s}, C_{2}^{s}, \cdots, C_{M}^{s}\}C^{s} = (y, c, \mathcal{T}(c))$$

$$\mathcal{T}(c) = \{c, x_{1}^{s}, x_{2}^{s}, \cdots, x_{|C|}^{s}\}$$

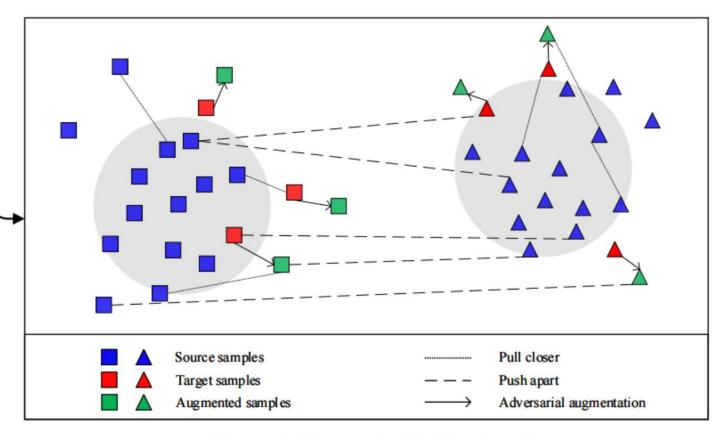
$$\mathcal{D}_{t} = \{C_{1}^{t}, C_{2}^{t}, \cdots, C_{N}^{t}\}, \text{ where } N(N \ll M)$$

$$\bar{x} = XLM - R(\mathbf{x})$$
(1)
$$\bar{x}^* = [\bar{x}^*_0, \bar{x}^*_1, \bar{x}^*_2, ..., \bar{x}^*_{|X^*|-1}]^\top; * \in \{s, t\}$$

$$H^{(l+1)} = ReLU(\hat{\mathbf{A}} \cdot H^{(l)} \cdot W^{(l)}) \qquad (2)$$

$$o = mean-pooling([H_{TD}; H_{BU}])$$
(3)

L



Adversarial Contrastive Training Paradigm

$$\tilde{o}_{noise}^t = \epsilon \frac{g}{||g||}; \text{ where } g = \nabla_{o^t} \mathcal{L}_{CE}^t$$
 (7)

$$\mathcal{L}^* = (1 - \alpha)\mathcal{L}^*_{CE} + \alpha\mathcal{L}^*_{SCL}; * \in \{s, t\} \quad (8)$$

$$\mathcal{L}_{CE}^{s} = -\frac{1}{N^{s}} \sum_{i=1}^{N^{s}} log(p_{i})$$
(4)
$$\mathcal{L}_{SCL}^{s} = -\frac{1}{N^{s}} \sum_{i=1}^{N^{s}} \frac{1}{N_{y_{i}^{s}} - 1} \sum_{j=1}^{N^{s}} \mathbb{1}_{[i \neq j]} \mathbb{1}_{[y_{i}^{s} = y_{j}^{s}]}$$
$$log \frac{exp(\sin(o_{i}^{s}, o_{j}^{s})/\tau)}{\sum_{k=1}^{N^{s}} \mathbb{1}_{[i \neq k]} exp(\sin(o_{i}^{s}, o_{k}^{s})/\tau)}$$
(5)

$$\begin{split} {}^{t}_{SCL} &= -\frac{1}{N^{t}} \sum_{i=1}^{N^{t}} \frac{1}{N_{y_{i}^{t}}} \sum_{j=1}^{N^{s}} \mathbb{1}_{[y_{i}^{t}=y_{j}^{s}]} \\ & \log \frac{exp(\sin(o_{i}^{t},o_{j}^{s})/\tau)}{\sum\limits_{k=1}^{N^{s}} exp(\sin(o_{i}^{t},o_{k}^{s})/\tau)} \end{split}$$
(6)

Target (Source)	Weibo-COVID19 (TWITTER)				Twitter-COVID19 (WEIBO)			
Model	Acc.	Mac- F_1	Rumor	Non-rumor	Acc.	Mac- F_1	Rumor	Non-rumor
			F_1	F_1			F_1	F_1
CNN	0.445	0.402	0.476	0.328	0.498	0.389	0.528	0.249
RNN	0.463	0.414	0.498	0.329	0.510	0.388	0.533	0.243
RvNN	0.514	0.482	0.538	0.426	0.540	0.391	0.534	0.247
PLAN	0.532	0.496	0.578	0.414	0.573	0.423	0.549	0.298
BiGCN	0.569	0.508	0.586	0.429	0.616	0.415	0.577	0.252
DANN-RvNN	0.583	0.498	0.591	0.405	0.577	0.482	0.648	0.317
DANN-PLAN	0.601	0.507	0.606	0.409	0.593	0.471	0.574	0.369
DANN-BiGCN	0.629	0.561	0.616	0.506	0.618	0.510	0.676	0.344
ACLR-RvNN	0.778	0.716	0.843	0.589	0.653	0.616	0.710	0.521
ACLR-PLAN	0.824	0.769	0.842	0.696	0.709	0.648	0.752	0.544
ACLR-BiGCN	0.873	0.861	0.896	0.827	0.765	0.686	0.766	0.605

Table 1: Rumor detection results on the target test datasets.

Model	Weibo-	COVID19	Twitter-COVID19		
WIOUEI	Acc.	Mac- F_1	Acc.	Mac- F_1	
BiGCN(T)	0.569	0.508	0.616	0.415	
$\operatorname{BiGCN}(S)$	0.578	0.463	0.611	0.425	
$\operatorname{BiGCN}(S,T)$	0.693	0.472	0.617	0.471	
DANN-BiGCN	0.629	0.561	0.618	0.510	
CLR-BiGCN	0.844	0.804	0.719	0.618	
ACLR-BiGCN	0.873	0.861	0.765	0.686	

Table 2: Ablation studies on our proposed model.

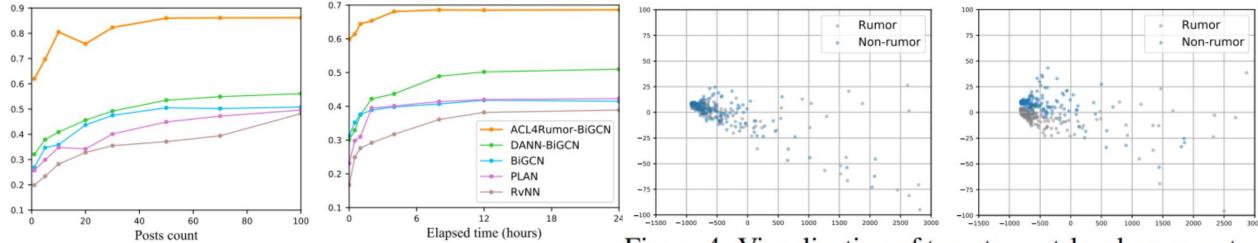


Figure 3: Early detection performance at different checkpoints of posts count (or elapsed time) on Weibo-COVID19 (left) and Twitter-COVID19 (right) datasets.

Thanks